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Abstract
The construction of two f -analogues of the two-mode squeezed vacuum and
coherent squeezed vacuum states are derived using deformation quantization
methods. The statistical properties of these states are studied and the method of
integration within an ordered product is used to derive several new completeness
relations.

PACS number: 42.50.Dv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the past few years much attention has been paid to the q-deformed boson oscillator and
its possible applications in studying the q-analogue of the quantum theory of the radiation
field [1–5]. Some important physical concepts such as the coherent state, even and odd
coherent state and squeezed state have been extended to the q-deformed case. The q-oscillators
are nonlinear oscillators with a very specific type of nonlinearity, in which the frequency of
vibration depends on the energy of these vibrations through the hyperbolic cosine function
containing a nonlinearity parameter. This interpretation of q-oscillators becomes obvious
if one uses the classical counterpart of the original quantum q-oscillators. This observation
suggests that there might exist other types of nonlinearity for which the frequency of oscillation
varies with the amplitude via a generic function; this leads to the concept of f -oscillators
devised in [6]. Then the notion of f -coherent states was straightforwardly introduced. The
so-called nonlinear coherent states, which are right-hand eigenstates of the product of the boson
annihilation operator and a nonlinear function f of the number operator, may be regarded as
a generalization of the f -coherent states [7]. Recently, de Matos Filho and Vogel [8] have
shown that one special class of nonlinear coherent states could be generated as stationary states
of the centre-of-mass motion of a laser-driven trapped ion far from the Lamb–Dicke regime.
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The speciality of these nonlinear coherent states are that besides coherence properties, they
can exhibit nonclassical features such as amplitude squeezing and self-splitting accompanied
by pronounced quantum interference effects. The notion of nonlinear coherent states has been
generalized to the even and odd nonlinear coherent states [9–11] and it was found that these
states have rather different statistical properties from those of the usual even and odd coherent
states.

Squeezed states are characterized by the property that one of the uncertainties is smaller
than that in a coherent state (naturally at the expense of the other, because of Heisenberg’s
principle). In the past few years, squeezed states have attracted considerable attention
due to their promising applications in quantum communication and detection of weak
signals [12–16]. In this paper, we will generalize the notion of nonlinear coherent states
to the two-mode nonlinear squeezed states, which is based on the properties of the inverses of
the annihilation operator and the creation operator of f -oscillators, and study their statistical
properties. Moreover, using the technique of integration within an ordered product (IWOP) of
operators [17] we derive some new completeness relations.

2. Two-mode nonlinear squeezed states

The annihilation operator bi and the creation operator b+
i of f -oscillators for the ith mode are

distortions of the annihilation and creation operators ai and a+
i of the usual harmonic oscillator

and are given by [9–11]

bi = aif (Ni) b+
i = f (Ni)a

+
i i = 1, 2 (1)

where

Ni = a+
i ai [bi, Ni] = bi [b+

i , Ni] = −b+
i (2)

f being an operator-valued function of the number operators (here it is chosen to be real). The
commutator between bi and b+

i can be easily obtained using the representations in Fock space

bi =
∞∑

n=0

√
n + 1f (n + 1)|n〉ii〈n + 1| (3)

b+
i =

∞∑
n=0

√
n + 1f (n + 1)|n + 1〉ii〈n| (4)

and it reads

[bi, b
+
i ] = (Ni + 1)f 2(Ni + 1) − Nif

2(Ni) i = 1, 2. (5)

We now introduce the inverse of the operators bi and b+
i as follows:

b−1
i =

∞∑
n=0

1√
n + 1f (n + 1)

|n + 1〉ii〈n| (6)

(b+
i )

−1 =
∞∑

n=0

1√
n + 1f (n + 1)

|n〉ii〈n + 1| = (b−1
i )+. (7)

A noncommutative relation between the inverse of the operators bi and b+
i follows

bib
−1
i = (b+

i )
−1b+

i = 1 (8)

b−1
i bi = b+

i (b
+
i )

−1 = 1 − |0〉ii〈0| (9)
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which means that b−1
i is the right inverse of bi and (b+

i )
−1 is the left inverse of b+

i . This
conclusion is analogous to the case of the inverse of ordinary boson operators. Using the
inverse operators b−1

i , (b+
i )

−1 and the number operators Ni we define the following operators:

B+
i = Nib

−1
i Bi = (b+

i )
−1Ni i = 1, 2. (10)

From equations (2), (8) and (9), we have

[bi, B
+
i ] = biNib

−1
i − Nib

−1
i bi = (Ni + 1)bib

−1
i − Ni(1 − |0〉ii〈0|) = 1 (11)

[Bi, b
+
i ] = (b+

i )
−1Nib

+
i − b+

i (b
+
i )

−1Ni = (b+
i )

−1b+
i (Ni + 1) − (1 − |0〉ii〈0|)Ni = 1. (12)

Following essentially the same method as in [18], we can prove that the normal product form
of the two-mode vacuum projector is

|00〉〈00| =: exp(−B+
i bi) := ... exp(−b+

i Bi)
... (13)

here (and hereafter) the repeated index in a term means summation over 1 to 2, the normal

ordering : : is for (B+
i , bi) and

...
... is for (b+

i , Bi). Using equation (13) and the IWOP technique,
we can prove the following overcompleteness relation:
∫

d2z1 d2z2

π2
exp(−ziz

∗
i )‖z1, z2〉〈z1, z2|

=
∫

d2z1 d2z2

π2
: exp(−ziz

∗
i + ziB

+
i + z∗

i bi − B+
i bi) := 1 (14)

∫
d2z′

1 d2z′
2

π2
exp(−z′

iz
′∗
i )‖z′

1, z
′
2〉〈z′

1, z
′
2|

=
∫

d2z′
1 d2z′

2

π2

... exp(−z′
iz

′∗
i + z′

ib
+
i + z′∗

i Bi − b+
i Bi)

... = 1 (15)

where

‖z1, z2〉 = exp(ziB
+
i )|00〉 〈z1, z2| = 〈00| exp(z∗

i bi) (16)

‖z′
1, z

′
2〉 = exp(z′

ib
+
i )|00〉 〈z′

1, z
′
2| = 〈00| exp(z′∗

i Bi). (17)

We now introduce the following states:

‖x1, x2〉 = π−1/2 exp
[− 1

2xixi +
√

2xiB
+
i − 1

2B+
i B+

i

]|00〉 (18)

〈x1, x2| = 〈00| exp
(− 1

2xixi +
√

2xibi − 1
2bibi

)
π−1/2 (19)

‖x ′
1, x

′
2〉 = π−1/2 exp

[− 1
2x ′

ix
′
i +

√
2x ′

ib
+
i − 1

2b+
i b

+
i

]|00〉 (20)

〈x ′
1, x

′
2| = 〈00| exp

(− 1
2x ′

ix
′
i +

√
2x ′

iBi − 1
2BiBi

)
π−1/2. (21)

Letting x̂i = (bi + B+
i )/

√
2 and x̂ ′

i = (Bi + b+
i )/

√
2 we have

x̂i‖x1, x2〉 = xi‖x1, x2〉 〈x1, x2|x̂i = 〈x1, x2|xi (22)

x̂ ′
i‖x ′

1, x
′
2〉 = x ′

i‖x ′
1, x

′
2〉 〈x ′

1, x
′
2|x̂ ′

i = 〈x ′
1, x

′
2|x ′

i . (23)

Performing the following integration by using the IWOP technique we obtain the completeness
relations ∫∫

dx1 dx2 ‖x1, x2〉〈x1, x2 | = 1
∫∫

dx ′
1 dx ′

2 ‖x ′
1, x

′
2〉〈x ′

1, x
′
2| = 1. (24)
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Following [18] we derive the f -analogue of two-mode squeeze operators by

S2 =
∫∫

dx1 dx2 ‖x1 cosh λ + x2 sinh λ, x1 sinh λ + x2 cosh λ〉〈x1, x2|

= 1

π

∫∫
dx1 dx2 : exp

[− cosh2 λ(x2
1 + x2

2 ) − x1x2 sinh 2λ

+
√

2(x1 cosh λ + x2 sinh λ)B+
1 +

√
2(x2 cosh λ + x1 sinh λ)B+

2

− 1
2 (b1 + B+

1 )2 − 1
2 (b2 + B+

2 )2 +
√

2(x1b1 + x2b2)
]

:

= exp(B+
1 B+

2 tanh λ) exp[(B+
1 b1 + B+

2 b2 + 1) ln sech λ] exp(−b1b2 tanh λ) (25)

S ′
2 =

∫∫
dx ′

1 dx ′
2‖x ′

1 cosh λ + x ′
2 sinh λ, x ′

1 sinh λ + x ′
2 cosh λ〉〈x ′

1, x
′
2|

= exp(b+
1b+

2 tanh λ) exp[(b+
1B1 + b+

2B2 + 1) ln sech λ] exp(−B1B2 tanh λ). (26)

By means of equations (25) and (26) we can prove that S2 and S ′
2 generate the following

two-mode squeeze transformations:

S2b1S
−1
2 = b1 cosh λ − B+

2 sinh λ (27)

S2b2S
−1
2 = b2 cosh λ − B+

1 sinh λ (28)

S ′
2B1S

′−1
2 = B1 cosh λ − b+

2 sinh λ (29)

S ′
2B2S

′−1
2 = B2 cosh λ − b+

1 sinh λ. (30)

Operating S2 and S ′
2 on the state |00〉 we obtain two f -analogues of squeezed vacuum

states

S2|00〉 = sech λ exp(B+
1 B+

2 tanh λ)|00〉 = sech λ

∞∑
n=0

tanhn λ

[f (n)]![f (n)]!
|n, n〉 (31)

S ′
2|00〉 = sech λ exp(b+

1b+
2 tanh λ)|00〉 = sech λ

∞∑
n=0

tanhn λ[f (n)]![f (n)]!|n, n〉 (32)

where

[f (k)]! = f (1)f (2) . . . f (k) [f (0)]! = 1. (33)

Operating the displacement operators D(z1, z2) = exp(ziB
+
i − z∗

i bi) and D(z′
1, z

′
2) =

exp(z′
ib

+
i − z′∗

i Bi) on the squeezed vacuum states S2|00〉 and S ′
2|00〉 respectively, we get the

f -analogue of coherent squeezed states

‖z1, z2, λ〉 = D(z1, z2)S2|00〉
= sech λ exp

[− 1
2 (|z1|2 + |z2|2) + (B+

1 − z∗
1)(B

+
2 − z∗

2) tanh λ
]‖z1, z2〉 (34)

‖z′
1, z

′
2, λ〉 = D(z′

1, z
′
2)S

′
2|00〉

= sech λ exp
[− 1

2 (|z′
1|2 + |z′

2|2) + (b+
1 − z′∗

1 )(b+
2 − z′∗

2 ) tanh λ
]‖z′

1, z
′
2〉. (35)

Using the IWOP technique and equation (13) we can prove that the state (34) and the following
state:

〈z1, z2, λ| = sech λ exp
[− 1

2 (|z1|2 + |z2|2) + (b1 − z1)(b2 − z2) tanh λ
]〈z1, z2| (36)
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compose the following completeness relation:∫
d2z1 d2z2

π2
‖z1, z2, λ〉〈z1, z2, λ|

=
∫

d2z1 d2z2

π2
: exp

[−|z1|2 − |z2|2 + z1B
+
1 + z2B

+
2 + z∗

1b1

+z∗
2b2 + (B+

1 − z∗
1)(B

+
2 − z∗

2) tanh λ

+(b1 − z1)(b2 − z2) tanh λ − B+
1 b1 − B+

2 b2
]

:= 1. (37)

Similarly, the state (35) and the state

〈z′
1, z

′
2, λ| = sech λ exp

[− 1
2 (|z′

1|2 + |z′
2|2) + (B1 − z′

1)(B2 − z′
2) tanh λ

]〈z′
1, z

′
2| (38)

satisfy the following completeness relation:∫
d2z′

1 d2z′
2

π2
‖z′

1, z
′
2, λ〉〈z′

1, z
′
2, λ| = 1. (39)

Generally speaking, there can be any number of f -analogues of squeezed vacuum states
and coherent squeezed states corresponding to various choices of the nonlinearity function.
In the following we shall confine ourselves to the choice of nonlinearity considered in [8] to
describe the motion of a trapped ion. In the present case the nonlinearity function f (k) is
given by

f (k) = L1
k(η

2)[(k + 1)L0
k(η

2)]−1 (40)

where η is known as the Lamb–Dicke parameter and Ll
k(x) denotes the generalized Lagurre

polynomials.

3. Statistical properties of the state S′
2|00〉

We now study the statistical properties of the state S ′
2|00〉. The second-order correlation

function for the ith mode is defined as

g
(2)
i (0) = 〈a+2

i a2
i 〉

〈a+
i ai〉2

(41)

g
(2)
i (0) < 1 means the ith mode exhibits antibunching effects. It is evident that for the state

S ′
2|00〉, g

(2)
1 (0) = g

(2)
2 (0). The second-order correlation function between two modes

g
(2)
12 (0) = 〈a+

1 a1a
+
2 a2〉

〈a+
1 a1〉〈a+

2 a2〉 > 1 (42)

shows that the two modes are correlated. If

I0 = [〈a+2
1 a2

1〉〈a+2
2 a2

2〉]1/2

|〈a+
1 a1a

+
2 a2〉| − 1 < 0 (43)

then the Cauchy–Schwartz inequality is violated.
The numerical calculation results for g

(2)
1 (0) and I0 are shown in figures 1, 2. From figure 1

we can see that both modes exhibit the antibunching effects, and the antibunching effects are
strengthened as the Lamb–Dicke parameter η increases. As the parameter λ > λ0 (λ0 depends
on the Lamb–Dicke parameter η), the Cauchy–Schwartz inequality is violated (see figure 2).
Like the ordinary two-mode squeezed vacuum state, the two modes in the state S ′

2|00〉 are
correlated (here omitted).
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Figure 1. (a) g
(2)
1 (0) versus λ for η = 0.4. (b) g

(2)
1 (0) versus λ for η = 0.8.
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Figure 2. (a) I0 versus λ for η = 0.4. (b) I0 versus λ for η = 0.8.

4. Summary and discussion

In this paper, we have generalized the notion of nonlinear coherent states to the two-mode non-
linear squeezed states, which is based on the properties of the inverses of the annihilation oper-
ator and the creation operator of f -oscillators, and study their statistical properties. The results
show that the introduced two-mode squeezed states have rather different statistical properties
from those of the usual squeezed states. These properties depend essentially on the Lamb–
Dicke parameter η. In view of their singular properties, states of the type considered might be of
great interest, for example in the optical and microwave fields, in molecular vibrations or nuclei
vibrations for polyatomic molecules etc. On the other hand, they turned out to be interesting
from the point of view of quantum groups too. In fact, the two-mode squeeze operators S2 and
S ′

2 can be rewritten as S2 = exp(λK+ − λK−), S ′
2 = exp(λK ′

+ − λK ′
−), where K− = b1b2,

K+ = B+
1 B+

2 , K0 = 1
2 (N1 + N2 + 1), and K ′

− = B1B2, K ′
+ = b+

1b+
2 , K0 = 1

2 (N1 + N2 + 1) are
two non-Hermitian two-mode realizations of SU(1, 1) Lie algebra in terms of the f -oscillator.
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Using the technique of IWOP of operators we derive some new completeness relations. It
should be pointed out that the usual completeness relations are constructed by the bra and ket
which are mutually Hermitian conjugate. The completeness relations we obtain here, however,
are composed of the bra and ket which are not mutually Hermitian conjugate.

With the recent advances in laser cooling of a trapped ion, it has become possible to realize
nonclassical states of the centre-of-mass motion of a single trapped ion. An ion confined in
an electromagnetic trap can be regarded as a particle with quantized centre-of-mass motion
moving in a harmonic potential. In the Lamb–Dicke limit and the resolved sideband limit, the
system can be simplified to a form similar to the Jaynes–Cummings model. As the coupling
between the vibrational modes and the external environment is extremely weak, dissipative
effects, which are inevitable from cavity damping in the optical regime, can be significantly
suppressed for the ion motion. This unique feature thus makes it possible to realize cavity QED
experiments without using an optical cavity. Following this approach, nonclassical vibrational
states of the trapped ions, such as Fock, coherent squeezed, even and odd coherent, nonlinear
coherent, and dark pair coherent states have been proposed. If we consider the quantized
motion of a two-level ion that is trapped in a two-dimensional isotropic harmonic potential,
the vibrational states of the trapped ions (following the line of thought of de Matos Filho
and Vogel [8]) may be related to the states constructed in this paper (this question is under
consideration).
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